The work of John Bluemle PhD

Stark

8-THE BADLANDS – PART TWO

Badlands erosion,North Unit of Theodore Roosevelt National Park,

Fig. 8-A. Erosion in the Sentinel Butte Formation, North Unit of Theodore Roosevelt National Park, McKenzie County. Some beds have eroded into a “rilled” micro-topography (center of photo), with vertical grooves, while other beds retain their horizontal layering, which forms tabular concretions in places. A lag covering of reddish nodules covers the surface at the base of slopes. Photo: 7-27-11

Rain and melting snow, wind, frost, and other forces of erosion have carved our badlands into intricate shapes. Since the Little Missouri River began to form the badlands, it has removed an enormous amount of sediment from the area. In the southern part of the badlands, near the river’s headwaters and close to Devils Tower in northeastern Wyoming and adjacent Montana, the river has cut down about 80 feet below the level at which it had been flowing before it was diverted by a glacier farther north. Near Medora, the valley floor is 250 feet lower than the pre-diversion level. Still farther downstream, in the North Unit of Theodore Roosevelt National Park and near the confluence of the Missouri and Little Missouri rivers, and nearer to where the glacier diverted it, the east-trending portion of the Little Missouri River flows at a level that is 650 feet deeper than when it was diverted.

The average rates of erosion in the badlands, assuming they started to form about 640,000 years ago, can be calculated as follows:

Headwaters area in Wyoming: 0.15-inch/100 years;

Medora area: 0.5-inch/100 years;

badlands, Bully Pulpit, North Dakota, geology

Fig. 8-B. This view is from the Bully Pulpit golf course near Medora, east of the Little Missouri River. The golden beds exposed in the cliff belong to the Bullion Creek Formation, which is the main geologic formation seen in the South Unit of Theodore Roosevelt National Park. Photo: 9-9-2009.

Confluence area near Mandaree – Missouri and Little Missouri rivers: 1.25 inch/100 years.

These rates may seem tiny but, over time, erosion has removed a huge amount of sediment. Approximately 40 cubic miles of sediment have been eroded and carried away by the Little Missouri River from the area that is now the badlands. Most of that sediment now lies beneath the water of the Gulf of Mexico.

The rates of erosion I’ve noted are long-term averages, but erosion goes on at highly irregular rates. Locally, considering only the past few hundred years, the badlands have undergone four separate periods of erosion and three periods of deposition. Since about 1936, new gullies have been cut to their present depths. It may seem a paradox that, although running water is the main agent of erosion, badlands formation tends to be most intense when water is in short supply. Why? Because erosion tends to be more vigorous during times of drought when the vegetative cover is too sparse to protect the soil from the occasional rain storm or spring snow melt. When precipitation is sufficient for the growth of heavy vegetation, the soil is better protected from severe erosion.

 

Fig. 8-C. Concretion pedestals (“hoodoos”) in badlands topography. The concretions act as caprock, and keep the underlying softer sediments from eroding, resulting in table-like configurations. These examples are in the South Unit, Theodore Roosevelt National Park, Billings County. Photo: 9-10-2009.

Fig. 8-C. Concretion pedestals (“hoodoos”) in badlands topography. The concretions act as caprock, and keep the underlying softer sediments from eroding, resulting in table-like configurations. These examples are in the South Unit, Theodore Roosevelt National Park, Billings County. Photo: 9-10-2009.

Streams and rivers carry sediment away from the area of the badlands, but most of the actual “on-the-spot” erosion is a result of slopewash. In places where vegetation is sparse, the soil and rock materials are easily weathered, forming loose surfaces that slide downslope easily, slumping and sliding during showers or when the snow cover melts.

The Badlands Landscape

The shapes, sizes, and configurations of the hills, buttes, valleys, and other landforms in the badlands are not entirely happenstance. Differences in hardness of the materials result in differences in resistance to erosion. Nodules and concretions help to shape a landscape ranging from beautiful, to desolate – even grotesque. Hard beds of sandstone or clinker cap many of the small buttes. Variations in permeability (permeability is a measure of the ease with which water can move through porous rock) have similar effects; rain and melted snow soak into the more open and permeable sands, resulting in only minimal erosion. When water flows over the surface of tighter, less permeable sediment, such as clay, it abrades and erodes the material, carrying some of it away. The presence or absence and the character of the vegetation also play important roles in governing the rate of erosion. Grass usually helps to control erosion more effectively than does forest vegetation.

The irregular placement of hard nodules and concretions may result in the development of rock-capped pillars, known as “hoodoos,” mushroom-like shapes perched on stalks of clay. In places, slopes are covered by nodules of siderite (iron carbonate). As they weather out of the surrounding materials, becoming concentrated on the surface, the copper-colored nodules form an erosion-resistant armor, which temporarily slows the rate of erosion. Clinker beds are also much more resistant to erosion than are the softer surrounding beds. We commonly see buttes capped by red clinker beds.

Limestone concretion, hoodoo

Fig. 8-D. Pedestal, a small “hoodoo” with a limestone concretion caprock, located about a half mile south of Lake Sakakawea in northern McKenzie County. Pods of such freshwater limestone are common in several of the Tertiary formations found in the badlands. They may occur sporadically or as semi-connected layers and they often form small caprocks, such as this one. Photo: 7-23-2010.

Badlands "Pipes"

Fig. 8-E. Badlands “pipes,” vertical cavities measuring about 15 feet top to bottom. These pipes are located in northeastern McKenzie County, about a half mile south of Lake Sakakawea. A cross-sectional view of a pipe, as shown here, is rare. More often, they are concealed with the only opening at the top (but notice that the tops of these pipes are partially sealed by a concretion. Photo 7-23-2010.

 

 

 

 

 

 

 

 

 

 

 

Erosional “pipes” sometimes form in gullies and ravines where surface runoff is focused. “Piping” results where runoff can flow downward into small cracks and joints.  Pipes are common in places where surface runoff erodes cavities vertically downward through the soft rock. With time, the initial pathways may widen at depth into caves the size of small rooms. The average depth of vertical pipes is about 10 to 15 feet, but some are much deeper. The tops of pipes may be partially concealed making hiking treacherous. I have seen the bones of animals, such as rabbits and deer, at the bottoms of pipes (so far I haven’t seen any human bones). The animals fell into the holes and could not get out.

Conclusion

The geology is only part of the badlands story. The weather and climate, vegetation, animals, birds, insects, sounds and aromas–all of these, along with the human history and the ranching heritage, work together to complete the story of the badlands.

I think the North Dakota badlands are particularly beautiful because of their parklands; wooded areas that occur in draws and on north-facing slopes. Heavy vegetation in the badlands in places like Little Missouri State Park adds to the scenery. Evergreens, such as the Rocky Mountain juniper, ponderosa, and creeping juniper are interspersed with quaking aspen, cottonwood, and poplar. Limber pines are found in the badlands in the southwest corner of the state, near Marmarth.

I’ve hiked and camped in the badlands many times. Evening summer showers accentuate the colors and the clinker beds assume intense shades of red and orange. The fresh, pungent aroma of wet sage and cedar enhance the experience. At night, the stark, intricately eroded pinnacles can seem unreal. In the moonlight or in a night lightning storm, it is easy to imagine the strange shapes as ruins of a magical city, rather than structures of mere sand and clay. Blend in the sound of coyotes conversing and the badlands environment is complete.

Little Missouri River, badlands

Fig. 8-F, Panoramic view of the bend in the Little Missouri River from North Unit of Theodore Roosevelt Park. Materials exposed in cliffs are Sentinel Butte Formation. Photo: 7-27-2011

 

7-THE BADLANDS – PART ONE

If asked what he or she knows about North Dakota’s geology, an average resident will likely mention the badlands first. That’s true too of visitors, many of whom come to the state to see our best-known natural feature, the scenic badlands along the Little Missouri River.

Little Missouri River

Fig. 7-A. View upstream (to the south) of the Little Missouri River in Billings and Golden Valley counties about three miles north of Bullion Butte. Photo: 7-8-2010.

The badlands landscape is a rugged and hilly one, best viewed from above, looking down on the hills, not up at them, as we usually view buttes. From the rim of the “breaks,” the point where we descend into the badlands, an intricately eroded landscape of sparsely wooded ridges, bluffs, buttes, and pinnacles lies before us. Black veins of lignite coal may be seen eroding out of the steep badlands slopes. Reddish bands of clinker add vivid colors to the area. Pieces of petrified wood, as well as fossil stumps and logs, litter the surface. Behind us stretch rolling plains, interrupted only by occasional buttes.

Bullion Creek Badlands, Golden Valley County

Fig. 7-B. Bullion Creek Formation badlands, four miles north of Bullion Butte in Golden Valley County. Castellated sandstone structures, resulting in towering or battlement shapes, can be seen at the top of the butte. Such structures are examples of one of many kinds of badlands erosion. Photo: 8-7-2011.

.

 

 

The American Indians, who inhabited the area when the European settlers arrived, referred to badlands as “mako sica,” (“land bad”). Early French explorers translated and added to this, referring to “les mauvais terrers a’ traverser” (“bad land to travel across”).

Bullion Creek badlands, Billings County

Fig. 7-C. Tertiary Bullion Creek Formation badlands along the Little Missouri River, Billings County. This view is to the north, along the East River Road about five miles north of the South Unit of Theodore Roosevelt National Park. The snow shows the erosion patterns in the south-facing bluffs in the distance beyond the river, which is at the base of the bluffs. Photo :1-15-2010.

 

 

 

 

General Alfred Sully, preparing to cross the badlands in August of 1864, described them as “hell with the fires burned out.” Theodore Roosevelt, who lived for a while in the Little Missouri Badlands in the 1880s, described them as “fantastically beautiful.” I prefer TR’s description.

Age of the Badlands Materials

Badlands topography is found in several places on the plains of the U.S. and Canada. The best-known badlands in the United States are the extensive “Big Badlands,” along the White River in western South Dakota. Near Dickinson we have the “South Heart Badlands” (known also as the “Little Badlands”) where we find layers of sedimentary rock, equivalent (same materials, same geologic age) in part to those in South Dakota’s Big Badlands. The South Heart Badlands are an erosional remnant of what was once a large butte or group of buttes. The South Heart Badlands are carved mainly from strata of Eocene and Oligocene age, ranging between 55 and 25 million years old. The youngest beds belong to the Miocene Arikaree Formation sandstone (22 million years old), which caps some badlands buttes.

South Heart Badlands

Fig. 7-D. South Heart Badlands about six miles south of South Heart, Stark County. Photo 9-24-2009..

North Dakota’s Little Missouri Badlands extend from near the Little Missouri River’s headwaters in Wyoming near Devils Tower to the point where the Little Missouri River joins the Missouri River in western North Dakota. The materials being eroded in these, our most extensive area of badlands, are much older than those in the South Heart Badlands.

The oldest materials in the badlands are in the southwest corner of the state, near Marmarth, where Cretaceous-age Hell Creek Formation beds (about 65 million years old) have been carved into badlands. The dark and somber, gray and purple beds of the Hell Creek Formation contain dinosaur fossils. Small patches of badlands, carved from the Hell Creek formation can also be seen along State Highway 1806 between Huff and Fort Rice in Morton County.

badlands

Fig. 7-E. This badlands topography is located about three miles northeast of Marmarth in Slope County. The materials are Cretaceous in age, about 65 million years old. In contrast to the badlands farther north, which are shades of light brown, these older beds are darker, tending to be purple and gray. They contain dinosaur fossils. Photo 10-22-2009.

However, the main area of  the Little Missouri Badlands is that which has been carved largely from the Paleocene Bullion Creek and Sentinel Butte formations, which were deposited  between 58 and 56 million years ago. The beds that have been eroded into these badlands are too young for dinosaur fossils; the dinosaurs were already extinct when they were deposited.

Between 70 and 40 million years ago, a major mountain-building event known as the Laramide Orogeny (orogeny = “mountain forming”) formed the Rocky Mountains in Montana and Wyoming. As the mountains rose, they were attacked by intense erosion, providing sediment to eastward-flowing rivers and streams. The rivers delivered the eroded sediment to western North Dakota’s coastal plain, an area that could be likened to today’s Mississippi River Delta (central North Dakota was an inland sea at that time). Sediment from the eroding mountains accumulated into thick layers of soft, poorly lithified siltstone, claystone, and sandstone: materials that were deposited on river floodplains and in swamps in what is now western North Dakota. These are the sediments we see exposed today in the Little Missouri Badlands.

In addition to the stream-transported sediments, clouds of volcanic ash, blown eastward from the rising Rocky Mountains during the Laramide Orogeny, collected in layers that were later weathered to clays ( “bentonite”). When wet, the clay absorbs water and swells, and it can become slippery when wet so don’t try walking or driving on it. When the beds dry, they assume a surface  texture, similar in appearance and consistency to popcorn, with colors ranging from white to bluish-gray or black.

Why the Badlands Formed

South Heart Badlands

Fig. 7-F. The dark-gray to black mound-like hills are examples of topography of the South Heart Member of the Eocene Chadron Formation in the South Heart Badlands south of the town of South Heart, Stark County. The material is a clay that forms a popcorn-like surface when it is dry. When wet, it is sticky and slippery. The clay is a weathering product of volcanic ash. Photo 9-24-2009

Even though the layers of sedimentary rock exposed in North Dakota’s Little Missouri Badlands range from Cretaceous through Eocene in age (65 to 50 million years old), the badlands themselves–the hills and valleys we see today–are not nearly that old. Before a glacier diverted it, the Little Missouri River flowed northward through a broad, smooth valley, joining the early Yellowstone River in northern Williams County. The Little Missouri and Yellowstone rivers came together near Alamo (about 30 miles north of Williston) in a place now buried beneath 400 feet of glacial deposits. From there, the combined Yellowstone-Little Missouri River flowed northeastward into Canada.

The diversion of the Little Missouri River, away from its route to the north, probably happened sometime prior to the deposition of a volcanic ash bed on the glacial sediment blocking the channel (the ash was deposited as a result of a volcanic eruption in the area of Yellowstone Park 640,000 years ago). It is possible, though, that an earlier glacier might have diverted the river – the 640,000-year figure is a minimum date; erosion of the badlands may have begun as early as 3.5 million years ago.

Since it was diverted by glacial ice, the Little Missouri River has flowed over a shorter and steeper route than it did prior to its diversion. That part of the river’s route today, from the point where it makes its sharp turn toward the east in the area of the North Unit of Theodore Roosevelt National Park, is east rather than north as it had been before a glacier diverted it. When the river assumed its new, shorter route toward the Gulf of Mexico, it began a vigorous erosion cycle, cutting down more rapidly and deeply and sculpting badlands topography. The badlands then, are an indirect result of glacial activity, even though the only conspicuous direct evidence of glaciation remaining in the area is an occasional glacial erratic on the upland in northern McKenzie County.

Sentinel Butte badlands; Theodore Roosevelt Park

Fig. 7-G. Badlands carved from the Tertiary-age Sentinel Butte Formation in the North Unit of Theodore Roosevelt National Park. Notice that certain beds can be followed across the entire vista, although they may be discontinuous, eroded away in places. An example is the bluish gray layer that forms the surface of many table-like pedestals. This layer is a bentonitic clay, a weathered volcanic ash deposit. The layers shown here are slightly younger than are those exposed in the South Unit of the park. Total relief here, from valley floor to upland surface, is about 500 feet. Photo: 10-24-2009

 

Now Available
North Dakota’s Geologic Legacy Our Land and How It Formed
North Dakota's Geologic Legacy 12-10-15-412
Purchase from Amazon Purchase from NDSU Press
Recent Comments
    Archives
    Categories