The work of John Bluemle PhD

Glaciers

10-GLACIERS IN NORTH DAKOTA – PART ONE

Glaciers in North Dakota: Part One

 

Glaciers are giant bodies of ice, formed from snow that survives from year to year. Accumulations of snowfall from past years compact into a substance called firn, a recrystallized residue of snow left over from past seasons. During the summers, when temperatures are warm enough for rain instead of snow, the rainfall adds to the mass of a glacier, eventually freezing and becoming part of the glacier. With time and additional snow cover, the whole mass gradually solidifies into hard ice: a glacier.

The color of pure glacial ice, if it is clear and lacking the various rocks and sediments often found in glaciers, is ice-blue. Drop a piece of glacial ice into a glass of warm water and it may literally “explode.” Any air trapped in the ice, thousands of years ago, and pressurized by the great overlying weight of the glacier, escapes with force from the piece of ice as it melts in the glass. By analyzing these trapped pockets of air, scientists can learn what our atmosphere consisted of in the past.

glacial ice, North Dakota, geolog

Fig. 10-A. This block diagram shows how glacial ice, as it flows over the surface of the ground, picks up debris from the underlying rock and sediment. These materials become part of the moving mass of the glacier. The bottom part of a glacier may consist of more entrained debris than ice. When the glacier eventually melts, all of the debris it contained is deposited on the ground. Diagram: 1-29-2015

When an ice mass becomes thick enough and heavy enough to flow, it “officially” becomes a true glacier. A glacier flows slowly away from the place where it is thickest. It may flow at a few feet a year although, in some circumstances, the flow rate may be much faster. In the northern hemisphere, glaciers expand mainly southward, away from polar regions because the temperatures to the south are warmer than to the north. A glacier flows most easily when it is warmer and less brittle. It will move much faster at 30 degrees F. than at minus 30 degrees F.

A glacier doesn’t glide placidly over the land. It scratches and grinds the underlying bedrock surface, picking up pieces of rock and soil, dragging them along and using them as tools to scour the ground beneath the ice.

glacial till; Dead Man Coulee

Fig. 10-B. This exposure, along Lake Sakakawea near Riverdale, shows a light-colored till in the foreground that is pre=Wisconsinan in age (more than 100,000 years old). Above, and in the background, is a younger till, probably Early Wisconsinan in age (about 70,000 years old). A quartzite erratic is encased in the till in the foreground. Photo: 10-09-2012.

Glaciers don’t normally flow uphill, but they do fill lowlands and overtop them, much like flood water.

Glaciers in mountainous areas, unlike broad ice sheets in places like Greenland and Antarctica, come with a sense of “scale.” The mountain peaks in the distance and the valley walls that hold the glacier help you to orient yourself. But suppose you are standing on a snow-covered, continental-size glacier (dressed in a heavy parka). You see nothing but frozen wasteland, nothing but whiteness. No buildings, no fences, no trees, no landmarks. Only emptiness. No sound but the wind. On a cloudy day, sky and ice blend; making it nearly impossible to distinguish the horizon marking their boundary.

The most-recent major glacial episode in North Dakota is referred to as the Wisconsinan glaciation. It began approximately 90,000 years ago and ended 11,500 years ago, but glacial conditions were not continuous during that entire time. An initial pulse of glaciation (the Early Wisconsinan, 90,000 to 70,000 years ago), was followed by withdrawal of the ice, which was probably complete by 65,000 years ago. Between 65,000 and 35,000 years ago, North Dakota’s climate alternated between combinations of warmer, wetter, cooler, and drier periods, much as it does today. Then, about 30,000 years ago, a second major pulse of glaciation, the Late Wisconsinan, began. The Late Wisconsinan glacier reached its maximum extent between 18,000 and 16,000 years ago when it covered all but the southwestern part of the state. The position of the Missouri River approximates the maximum extent of the Late Wisconsinan glacier. Active glaciers melted completely from the state by 11,500 years ago.          

baked till

Fig. 10-C. Baked till exposure in Ward County. When a lignite seam just beneath this till burned, it baked the overlying materials, including this till, to a reddish-hued material. Baked till is uncommon in North Dakota but, in this case, the baking helps to accentuate the larger particles (pebbles and cobbles) from the finer-grained groundmass. The till is probably Late Wisconsinan in age; it was probably baked sometime during the past 10,000 years. Photo scan 1965.

  By the time each glacier advanced, the land ahead of it may have become deeply frozen permafrost and, as the ice moved over the frozen rock and soil, it picked up chunks of these materials, incorporating them into the glacier itself. In the areas where it formed, west of Hudson Bay, the materials beneath the thickening ice were mainly crystalline igneous and metamorphic rocks such as granite and gneiss. Farther south, the glaciers flowed over layers of sedimentary rock.  Whatever the ice flowed over, it picked up some of it and carried it along.

A moving glacier may be likened to a huge excavation and grading machine that does its job of eroding by plucking and abrasion. Plucking, the more important of the two, is based on a freeze-thaw cycle. The cycle begins when downward pressure melts the ice at the base of a glacier. Water seeps into cracks in the rock beneath the glacier. When the water freezes, the expanding ice plucks rock fragments and incorporates them into the debris near the base of the glacial ice.

After a glacier covers an area for a while, and a considerable thickness of ice lies on the land, the materials beneath a glacier gradually thaw, a combined result of the pressure of the overlying ice and the natural upward flow of heat from the Earth’s interior. The ground surface beneath the North Dakota glaciers was not frozen, and the base of a glacier may have been a muddy mass. This facilitated even more sediment being incorporated into the base of the moving ice.

In some places ground water in the saturated sediments beneath the heavy weight of the glacier built up great pressures due to the weight of the overlying ice.

Besides transforming materials beneath the ice into a mud-like mixture, the water, because it was pressurized, tended to force — squeeze–the sub-glacial sediments upward, into the base of the moving glacier. Sediments beneath the ice were smeared out as they were carried along with the advancing mass of ice.

Dead Man Coulee, geology, glacial till,

Fig. 10-D. This cliff of till is located along the shore of Lake Sakakawea near Riverdale. When the lake was flooded, waves attacked the shore of what was previously a smooth, grassy valley (Dead Man Coulee). The waves quickly eroded the steep exposure of till. The age of this till is probably Early Wisconsinan (lower part) and Late Wisconsinan (upper part). Photo: 6-20-2009

A glacier seldom behaves like a bulldozer, pushing debris ahead of it. It does, however, incorporate debris as it moves by freezing it onto its base. In whatever way the boulders, gravel, sand, silt, and clay beneath a glacier became part of the moving glacier mass, both ice and sediment flowed forward and the farther the glacier traveled, the more material it accumulates. Glaciers advanced over North Dakota several times, and each time, when they melted, they dropped their entire load of rock and sediment, material gathered from places previously overridden. Some of the material carried by the glacier ended up far from where it had originated. We find rocks in North Dakota that came from northern Saskatchewan, Manitoba, and Ontario. We also find chunks of shale that came from only a few dozen feet away. The sediment a glacier was carrying finally came to rest when the last ice melted.

During the active life of a glacier, every crystal of ice, every boulder, sand grain and fragment of rock within the ice, is moving, slowly making its way away from the center of snow and ice accumulation.

In North Dakota, the movement was generally southward, away from the Keewatin center of ice accumulation west of Hudson Bay. Apart from its overall southward progress, variations in the topography over which the glacier advanced locally affected the direction of flow.

When the glaciers that covered much of North Dakota eventually melted, all of the material they had been carrying was laid down on the land surface where the glacier had been. This included everything from large boulders (erratics) to fine-grained material: sand, silt, and clay. This “glacial sediment,” deposited directly from the melting ice, is known as “till.” Till was deposited as a kind of stony mud that eventually dried out after the glacier melted away. Usually, the till amounted to a few tens of feet of material, but after several glaciations, it might have accrued to several hundred feet: the materials from several glaciations, stacked one on top of another.

glaciers, North America, glacial map

Fig. 10-F. This map of North America shows the extent of the major continental-scale glaciers during the Pliocene/Pleistocene glaciation. North Dakota was glaciated by ice flowing from the Keewatin Center, located west of Hudson Bay. This map shows the maximum extent of Early and/or pre- Wisconsinan glaciers (“Maximum southern extent of Pleistocene glaciation”) and also the maximum extent of the Late Wisconsinan glaciation, which did not cover as much area as previous glaciations had. The maximum extent of the Late Wisconsinan glaciation may have been about 18 to 20 thousand years ago.
Glaciers flowing from the several centers grew large enough to coalesce. Thus, the Keewatin and Cordilleran centers merged in Alberta and Montana. When the ice eventually withdrew, opening an ice-free corridor between the Cordilleran and Keewatin ice sheets, it is theorized that the earliest Americans (Canadians?), who had migrated from Asia by way of the Beringia Land Bridge (which had been drained due to the low sea level), were able to migrate southward.
Note too, the minimum sea level reached during the glacial epochs (Minimum sea level line). Great amounts of sea water were tied up as ice so sea level was lower. Sea level was about 400 feet lower than it is today, exposing much more area on the continents.
(I don’t recall where I found this map, but I used it in a talk I gave in 2013. Dozens of similar examples exist on the internet).

5-ESKERS AND KAMES

Dahlen Esker

Fig. 5-A. Dahlen Esker, junction of Grand Forks, Walsh, and Nelson counties. This view is to the south, in the direction the stream that deposited the esker was flowing. The esker has a generally accordant crest level, which, however, appears irregular because of numerous minor gaps. The esker consists of a mixture of sand, gravel, till, and boulders, a mixture that resulted from a combination of materials deposited by running water, and debris in the glacier sliding from the ice walls into the esker stream. Photo: 6-26-2009.

Eskers and kames are among the best-known of the various features formed by glaciers and by the running water associated with melting glaciers. Eskers come in all sizes: ridges snaking across the countryside ranging from a few hundred feet to several miles long, and up to 50 or 100 feet high. Kames may be cone or pyramidal-shaped hills as high as a hundred feet, or they may be simply small mounds of material. Kames and eskers are found in most parts of North Dakota that were covered by the Late Wisconsinan glacier.

Eskers were deposited by streams and rivers flowing 1)  on the surface of a glacier, 2) in cracks in the glacial ice or, sometimes, 3) in tunnels beneath the ice. Imagine a river flowing in a valley or crack in the glacier. The banks of the river were formed of ice and, in some places, the river floor might also have been on ice. These Ice-Age rivers and streams deposited gravel and sand in their ice-walled valleys, just as a modern stream deposits sediment in its earthen valley. However, the ice banks of esker rivers eventually melted away, leaving the gravel deposits that had been deposited in the ice-walled valleys, standing as ridges above the surrounding countryside.

 

North Dakota has thousands of esker ridges. Most are small and non-descript, apparent only from a height (air view) or on air photos, but some eskers are impressive.

esker, North Dakota, glaciation, geology

Fig. 5-B. This diagram shows how an esker forms when a stream of meltwater carrying sediment develops beneath a glacier or, in some instances, in an open crack in the glacier. Such a stream may meander a little as it winds its way underneath the glacier, making its way to the front of the ice. The sand and gravel are eventually deposited when the ice melts, and the meltwater flow gradually slows and it drops its sediment load. When the ice melts away, the fluvial sediment is left as a long, narrow, winding ridge, which marks the course of the former subglacial, ice-walled stream.
The stream may be in a crack so that it does not flow in a tunnel, and it may flow on both solid ground in places beneath the glacier and over ice in other places. In places where the stream flowed over ice, the esker ridge may have a gap or dip in its crest because, when the ice beneath the stream bed melted, the overlying stream deposits collapsed.
1-30-2015

One of the best examples of an esker in the U.S. is the Dahlen Esker, located midway between Fordville and Dahlen in the northeastern part of the state. It can be seen as a prominent ridge off to the west where State Highway 32 crosses the Grand Forks-Walsh County line. If the weather is dry, you can drive about a mile on a section-line trail to the crest of the Dahlen Esker (if the fields on either side of the trail are being farmed, be careful not to drive on the crops).

Kame, Jack Lake

Fig. 5-C. The Jack Lake kame in eastern Foster County, a mile west of the James River and eight miles east of the town of Bordulac. This is a scan of a photo I took in 1962. Notice that much of the kame (the hill in the center of the photo) has been removed for gravel. Photo scan: 1962.

 

 

 

 

 

 

 

 

 

 

The Dahlen Esker was deposited by a meltwater stream flowing in an ice-walled channel, or possibly through a tunnel in the ice,  near the edge of the glacier. The stream flowed mainly southward, toward the margin of the glacier. The esker is about four miles long, 400 feet wide, and as high as 50 to 80 feet. In some places, native prairie covers the surface. The Dahlen Esker has been described in various geologic reports dating to the late 19th century, but the best description and discussion of the feature was provided by Jack Kume for the North Dakota Geological Survey (“The Dahlen Esker of Grand Forks and Walsh Counties, North Dakota,” Miscellaneous Series 32, 1966).

Other large eskers include ones near Benedict in northeastern McLean County;  another about ten miles southwest of Carrington in Foster County; one immediately west of Hannaford in Griggs  and Barnes counties; one near Dazey in Barnes and Stutsman counties; and an unusual one in Frankhauser Lake in northern Sheridan County. The Frankhauser esker is particularly interesting because it winds its way through a lake, which floods a depression that was formed by ice-thrusting. The esker formed during the ice-thrusting process.

Kames are similar in many ways to eskers. Like eskers, they consist largely of gravel and sand, but they are conical or irregularly shaped hills, rather than long ridges.

Pierce County Kame

Fig. 5-D. The hill in the middle of this photo is a kame two miles southeast of Orrin in Pierce County. Photo 8-20-2010.

Water flowing on the surface of the glacier, or in esker valleys, plunged into holes in the ice, filling the  holes with a mixture of materials. When the ice eventually melted, the water-deposited materials slumped down, resulting in mounds and conical hills. Kames occur in several places, mainly on the Glaciated Plains, usually in association with ground moraine, but they are sometimes found in areas of dead-ice moraine. A few examples include one in southwestern Richland County, one south of Lidgerwood, and one west of Cayuga in Sargent County. A prominent kame, visible from miles away, is located four miles south of State Highway 200 in eastern Foster County along the west side of the James River. About half of the 60-foot-high feature has been mined for sand and gravel.

Most eskers and kames are composed of coarse, poorly sorted materials, a mixture of sedimentary textures ranging from silt and sand, up to large cobbles or boulders. As they were forming, flowing water deposited flat-lying beds of sand and gravel. Later though, when the ice-walls melted and the bedding collapsed, the bedding became contorted. While a stream was flowing in an ice-walled tunnel or valley, or water was flowing into a hole in the glacier (a “moulin”), cobbles and boulders fell from the melting ice into the water-lain deposits, into the stream or down the moulin. Some eskers have a nearly complete covering of boulders on their surfaces. Most kame or esker deposits contain so many cobbles they are not suitable for construction purposes. Some of them consist of materials suitable for rough fill work.

Frankhauser Esker, Sheridan County

Fig. 5-E. This is an air view of the Frankhauser Esker in northern Sheridan County, about eight miles southwest of the Town of Drake. The esker lies in a lowland that is largely flooded by a lake. The lowland is the result of ice thrusting. The glacier excavated material from what is now the lowland and deposited it a short distance to the southeast, forming a prominent hill. The esker formed when large amounts of groundwater were released as the glacier removed material overlying a large aquifer. The water flowed in a tunnel at the base of the glacier, depositing the gravel and sand in the esker ridge. Photo scan: 1979.

Now Available
North Dakota’s Geologic Legacy Our Land and How It Formed
North Dakota's Geologic Legacy 12-10-15-412
Purchase from Amazon Purchase from NDSU Press
Recent Comments
    Archives
    Categories