The work of John Bluemle PhD

Buttes

14-KILLDEER MOUNTAINS

 

Pembina mountain, geology, North Dakota

Fig. 14-A. View to the east from Pembina Mountain over the Red River Valley of the North. The town of Mountain is about three miles in the distance. The town’s name may have alluded to the view of the “mountain” to the west as the town itself was on the relatively flat shore of Glacial Lake Agassiz. Photo June, 2009.

Several years ago, billboards were posted around North Dakota in an effort to entertain and catch motorists’ attention. One of them, outside of Mandan, read “North Dakota Mountain Removal Project Completed.” The billboard referred to the image many people have of North Dakota as a flat and featureless land, but the sign ignored the fact that, within our borders are at least half-a-dozen features bearing the name “mountain.” Was the removal project a failure?

Fig. 14-B. Tracy Mountain, 8 miles southwest of Fryburg in Billings County. The caprock is probably Sentinel Butte Formation.

Fig. 14-B. Tracy Mountain, 8 miles southwest of Fryburg in Billings County. The caprock is probably Sentinel Butte Formation. Photo September 9, 2009.

 

 

 

 

 

One of our mountainous areas is the Killdeer Mountains in western North Dakota, about 40 miles due north of Dickinson. Another is Turtle Mountain, home of the International Peace Garden on the North Dakota-Manitoba border. (Turtle Mountain is singular, not plural; I’ll explain later). It may seem odd that the Killdeer Mountains, Turtle Mountain, and several other features in North Dakota are called “mountains.” The idea may be related somewhat to scale. When viewed by a person who has recently traveled over eastern North Dakota, the features may be  impressive, but I wonder what they might have been named if more of our settlers had come via Wyoming or Montana.

Killdeer Mountains, North Dakota, geology

Fig. 14-C. View of North Killdeer Mountain in Dunn County. Photo August 5, 2009.

We have several more places in North Dakota that bear the name “mountain.” The town of Mountain in Pembina County was settled by Icelanders in 1873. Mountain is situated on the former shoreline of glacial Lake Agassiz, and the view from there, over the Red River Valley, is impressive. Just north of Mountain, the hilly area along the Pembina River Valley in northeastern North Dakota is sometimes referred to as “Pembina Mountain,” but the term “Pembina Hills” is commonly used as well. The steep escarpment is also referred to as the “Pembina Escarpment” or “Manitoba Escarpment.” Pioneer geologist David Dale Owen, when he traveled through the Red River Valley in 1848, commented on Pembina Mountain thus: it is “in fact no mountain at all, nor yet a hill. It is the terrace of table land – the ancient shore of a great body of water that once filled the Red River Valley.” People have been critical of the kind of mountains we have in North Dakota ever since! (Owen was from Indiana).

Killdeer Mountains, North Dakota, geology

Fig. 14-D. View toward the east of South Killdeer Mountain. Photo August 5, 2009.

Other named “mountains” in North Dakota include Devils Lake Mountain in southeastern Ramsey County, Blue Mountain in western Nelson county, Lookout Mountain in northeastern Eddy County, and the Prophets Mountains in western Sheridan County. All of these features are ice-thrust hills or complexes of ice-thrust topography that stand as high as a few hundred feet above the surrounding areas. Near Medora, in Billings County, we have Tracy Mountain, but we don’t have many “mountains” in southwestern North Dakota – in that area the term “butte” is used more often. Several hundred formally named features called “hills” or “buttes” are found in North Dakota, as well as a few “points” and “ridges.” Many of these are at least as impressive as some of our mountains. We also have many features that fit the formal definition of a mesa, but very few of them have been referred to as mesas. I won’t dwell any longer on the vagaries of naming topographic features. The names don’t necessarily make much sense. We do manage to communicate, at least if we stay close to home. This article will deal mainly with the Killdeer Mountains and I will follow it with an article on Turtle Mountain. Both features are of considerable scenic beauty no matter what you want to call them and both have interesting stories to tell. The Killdeer Mountains 

Arikaree Formation, wormy marker bed, North Dakota, geology, Killdeers

Fig. 14-E. Arikaree Formation, a highly resistant, freshwater limestone that forms a caprock on the Killdeer Mountains. This formation is known also as the Wormy Marker Bed. The rock has holes caused by burrowing mollusks (clam-like animals similar to modern shipworms) before the sediment solidified. Photo September 25, 2009.

        The Killdeer Mountains consist of two large, flat-topped buttes in Dunn County. They cover an area of 115 square miles and rise from 700 to 1,000 feet above the surrounding plains. The entire elevated Killdeer Mountain region is about nine miles long and six miles wide. The highest elevation in the area is 3,314 feet, which is 192 feet lower than the highest point in the state (White Butte). The term “Killdeer” is presumably a translation of a Sioux phrase: “Tah-kah-p-kuty” (the place where they kill the deer).

Arikaree boulders, geology, North Dakota, Killdeer

Fig. 14-F. The slopes of the Killdeer Mountains are littered with large numbers of boulders that have broken away from the Arikaree Formation caprock and rolled down the slopes around the buttes. They are especially numerous on the south slope of South Killdeer Mountain. Photo September 25, 2009.

 

 

 

 

 

The caprock on the Killdeer Mountains consists of a 300-foot-thick sequence of siltstone, sandstone and carbonate beds that belong to the Miocene-age Arikaree Formation. One of the most conspicuous, ledge-forming units within the Arikaree Formation is found about 150 feet below the caprock. Known as the “burrowed marker unit” or “wormy marker bed,” it is a sequence of hard, erosion-resistant interbedded siltstone and sandstone with some carbonate lenses (the burrows in the bed were dug by clams living in the sediment before it hardened; the organisms that did the digging were similar to modern “shipworms”). The Arikaree Formation lies on top of the Eocene-age Chadron Formation, a sequence of yellow to green sandy mudstone, clayey sandstone, and pebbly sandstone. The tree-covered, slopes around the flanks of the Killdeer Mountains are mainly landslide topography, consisting of materials that have fallen or slid from higher up. A little farther away, the grassy or farmed, less-hilly areas are underlain mostly by the Golden Valley Formation, a Paleocene to Eocene-age rock unit. The Paleocene Sentinel Butte Formation, which underlies the Golden Valley Formation beneath the Killdeer Mountains, occurs at the surface in a broad area surrounding the Killdeer Mountain upland.

caprock, Arikaree formation, North Dakota, geology, Killdeer

Fig. 14-G. This boulder on a south slope of the Killdeer Mountains has broken off of the Arikaree Formation caprock (Wormy Marker Bed) near the top of the butte and rolled down the butte. Photo September 25, 2009.

The two main buttes that make up the Killdeer Mountains coincide with areas that were once lakes in which sandy and limy sediments, along with some stream deposits, accumulated during Miocene time. Repeated volcanic eruptions in the Rocky Mountains to the west produced large amounts of ash, which blew eastward, fell to the ground, and washed into the lakes, forming tuffaceous (meaning they contain volcanic ash) sandstones.

Battle of Killdeer Mountain, geology, North Dakota

Fig. 14-H. This sign overlooks the site of the Battle of Killdeer Mountain, at the south end of the Killdeer Mountains. The site is 8 ½ miles northwest of the town of Killdeer. Photo August 5, 2009.

 

 

 

 

 

A new erosion cycle began about five million years ago, long after the lakes had filled with sediment, and dried up. The relatively hard tuffs and freshwater limestone and sandstone beds that had been deposited in the Miocene lakes were much more resistant to erosion than were the surrounding sediments. Because of their resistance to erosion, these hard materials remained standing above the surrounding area as the softer Golden Valley and Sentinel Butte sediments were eroded away by streams and rivers. The Killdeer Mountains, with their resistant caprock, are the result of that erosion; they are the modern manifestation of ancient lake beds. The topography has undergone a complete reversal; areas that were once low are now high due to their resistance to erosion.

medicine hole, killdeer mountain, geology, North Dakota

Fig. 14-I. This is the opening in the rocks that serves as the entrance to Medicine Hole, on top of South Killdeer Mountain. Photoscan 1970s photo.

Two sites in the Killdeer Mountains are of particular interest. The Killdeer Mountain Battle State Historic Site is located on the southeast edge of the Killdeer Mountains, seven miles northwest of the town of Killdeer (Section 34, T. 146 N., R. 96 W.). The Battle of the Killdeer Mountains took place on July 28, 1864 when General Sully and 2,200 troops used artillery on 6,000 Teton and Yanktonai Sioux in revenge for the uprising of Santee Sioux in southern Minnesota. Sully decimated the Sioux, killing many of them and destroying their camp and equipment. Less than a year earlier, on September 3, 1863, Sully had accomplished a similar feat at the Battle of Whitestone Hill, where his troops killed, captured or wounded 300 to 400 Sioux Indians. Medicine Hole is, indeed, a hole in the ground, but it is not a cave in the traditional sense because it did not form as most caves do. No solution of carbonates was involved, and there are no stalactites or stalagmites. It is, rather, a crack in the ground, where a large block of material has begun to fall away from the main body of the southern butte of the Killdeer Mountain. Medicine Hole is located on private land and, as I write this, in 2015, the area is not open to public access. Please respect the wishes of the land owner. The Killdeer Mountains support the largest deciduous forest in southwestern North Dakota, except for the forests on the floodplains bordering the major rivers. The Killdeer Mountain forest consists largely of aspen and oak, with some ash, elm, birch, and juniper, along with shrubs such as chokecherry, willow, plum and buffaloberry. The forest is interesting in that it contains species that tend to be found in more boreal settings, areas that may be 200 miles or more to the northeast.

frost wedge, glaciation, Killdeers, North Dakota, geology

Fig.-14-J. Photo of a frost wedge in pediment sediments along the west side of Killdeer Mountain. The geologist’s finger is pointing to the wedge formed when the frost forced sand and gravel apart during the Ice Age when the area was a tundra environment.* Photoscan, JPB photo, 1970s.

In summary, the Killdeer Mountains are an erosional feature, preserved because of their resistant caprock of tuffaceous sandstone and limestone. Erosion of the area began in late Miocene time, and continued into Pleistocene time, resulting in gravel-covered, flat, sloping surfaces (pediments) around the flanks of the Killdeer Mountain uplands. These gravel deposits, up to ten feet thick, were derived from the sandstone and limestone beds higher up in the Killdeers. The gravels are themselves resistant to further erosion and they help to retard the rate of the ongoing, modern erosion cycle. The current erosion cycle began when the nearby Little Missouri River was diverted by a glacier from its northerly route so that it flowed (flows) eastward to its modern confluence with the Missouri River. As a result of the diversion, and the resulting steeper gradient over which it flows, the Little Missouri River began to erode vigorously, carving the badlands through which the modern river flows today. Although the Killdeer Mountains show no evidence of ever having been glaciated, their modern topography dates largely to the Pleistocene. Old ice wedges can be seen in the pediment gravels in places, testimony to the time when the area was subjected to tundra conditions during one or more of the glacial epochs. There were no glaciers over the Killdeers, but continuous frigid conditions provided a tundra ecosystem. *Frost WedgesFrost wedges are common,  but many areas of patterned ground that have been interpreted to be frost polygons are really dessication cracks developed in silcrete. These are much older than frost wedges, such as this one, which formed in loose materials.

8-THE BADLANDS – PART TWO

Badlands erosion,North Unit of Theodore Roosevelt National Park,

Fig. 8-A. Erosion in the Sentinel Butte Formation, North Unit of Theodore Roosevelt National Park, McKenzie County. Some beds have eroded into a “rilled” micro-topography (center of photo), with vertical grooves, while other beds retain their horizontal layering, which forms tabular concretions in places. A lag covering of reddish nodules covers the surface at the base of slopes. Photo: 7-27-11

Rain and melting snow, wind, frost, and other forces of erosion have carved our badlands into intricate shapes. Since the Little Missouri River began to form the badlands, it has removed an enormous amount of sediment from the area. In the southern part of the badlands, near the river’s headwaters and close to Devils Tower in northeastern Wyoming and adjacent Montana, the river has cut down about 80 feet below the level at which it had been flowing before it was diverted by a glacier farther north. Near Medora, the valley floor is 250 feet lower than the pre-diversion level. Still farther downstream, in the North Unit of Theodore Roosevelt National Park and near the confluence of the Missouri and Little Missouri rivers, and nearer to where the glacier diverted it, the east-trending portion of the Little Missouri River flows at a level that is 650 feet deeper than when it was diverted.

The average rates of erosion in the badlands, assuming they started to form about 640,000 years ago, can be calculated as follows:

Headwaters area in Wyoming: 0.15-inch/100 years;

Medora area: 0.5-inch/100 years;

badlands, Bully Pulpit, North Dakota, geology

Fig. 8-B. This view is from the Bully Pulpit golf course near Medora, east of the Little Missouri River. The golden beds exposed in the cliff belong to the Bullion Creek Formation, which is the main geologic formation seen in the South Unit of Theodore Roosevelt National Park. Photo: 9-9-2009.

Confluence area near Mandaree – Missouri and Little Missouri rivers: 1.25 inch/100 years.

These rates may seem tiny but, over time, erosion has removed a huge amount of sediment. Approximately 40 cubic miles of sediment have been eroded and carried away by the Little Missouri River from the area that is now the badlands. Most of that sediment now lies beneath the water of the Gulf of Mexico.

The rates of erosion I’ve noted are long-term averages, but erosion goes on at highly irregular rates. Locally, considering only the past few hundred years, the badlands have undergone four separate periods of erosion and three periods of deposition. Since about 1936, new gullies have been cut to their present depths. It may seem a paradox that, although running water is the main agent of erosion, badlands formation tends to be most intense when water is in short supply. Why? Because erosion tends to be more vigorous during times of drought when the vegetative cover is too sparse to protect the soil from the occasional rain storm or spring snow melt. When precipitation is sufficient for the growth of heavy vegetation, the soil is better protected from severe erosion.

 

Fig. 8-C. Concretion pedestals (“hoodoos”) in badlands topography. The concretions act as caprock, and keep the underlying softer sediments from eroding, resulting in table-like configurations. These examples are in the South Unit, Theodore Roosevelt National Park, Billings County. Photo: 9-10-2009.

Fig. 8-C. Concretion pedestals (“hoodoos”) in badlands topography. The concretions act as caprock, and keep the underlying softer sediments from eroding, resulting in table-like configurations. These examples are in the South Unit, Theodore Roosevelt National Park, Billings County. Photo: 9-10-2009.

Streams and rivers carry sediment away from the area of the badlands, but most of the actual “on-the-spot” erosion is a result of slopewash. In places where vegetation is sparse, the soil and rock materials are easily weathered, forming loose surfaces that slide downslope easily, slumping and sliding during showers or when the snow cover melts.

The Badlands Landscape

The shapes, sizes, and configurations of the hills, buttes, valleys, and other landforms in the badlands are not entirely happenstance. Differences in hardness of the materials result in differences in resistance to erosion. Nodules and concretions help to shape a landscape ranging from beautiful, to desolate – even grotesque. Hard beds of sandstone or clinker cap many of the small buttes. Variations in permeability (permeability is a measure of the ease with which water can move through porous rock) have similar effects; rain and melted snow soak into the more open and permeable sands, resulting in only minimal erosion. When water flows over the surface of tighter, less permeable sediment, such as clay, it abrades and erodes the material, carrying some of it away. The presence or absence and the character of the vegetation also play important roles in governing the rate of erosion. Grass usually helps to control erosion more effectively than does forest vegetation.

The irregular placement of hard nodules and concretions may result in the development of rock-capped pillars, known as “hoodoos,” mushroom-like shapes perched on stalks of clay. In places, slopes are covered by nodules of siderite (iron carbonate). As they weather out of the surrounding materials, becoming concentrated on the surface, the copper-colored nodules form an erosion-resistant armor, which temporarily slows the rate of erosion. Clinker beds are also much more resistant to erosion than are the softer surrounding beds. We commonly see buttes capped by red clinker beds.

Limestone concretion, hoodoo

Fig. 8-D. Pedestal, a small “hoodoo” with a limestone concretion caprock, located about a half mile south of Lake Sakakawea in northern McKenzie County. Pods of such freshwater limestone are common in several of the Tertiary formations found in the badlands. They may occur sporadically or as semi-connected layers and they often form small caprocks, such as this one. Photo: 7-23-2010.

Badlands "Pipes"

Fig. 8-E. Badlands “pipes,” vertical cavities measuring about 15 feet top to bottom. These pipes are located in northeastern McKenzie County, about a half mile south of Lake Sakakawea. A cross-sectional view of a pipe, as shown here, is rare. More often, they are concealed with the only opening at the top (but notice that the tops of these pipes are partially sealed by a concretion. Photo 7-23-2010.

 

 

 

 

 

 

 

 

 

 

 

Erosional “pipes” sometimes form in gullies and ravines where surface runoff is focused. “Piping” results where runoff can flow downward into small cracks and joints.  Pipes are common in places where surface runoff erodes cavities vertically downward through the soft rock. With time, the initial pathways may widen at depth into caves the size of small rooms. The average depth of vertical pipes is about 10 to 15 feet, but some are much deeper. The tops of pipes may be partially concealed making hiking treacherous. I have seen the bones of animals, such as rabbits and deer, at the bottoms of pipes (so far I haven’t seen any human bones). The animals fell into the holes and could not get out.

Conclusion

The geology is only part of the badlands story. The weather and climate, vegetation, animals, birds, insects, sounds and aromas–all of these, along with the human history and the ranching heritage, work together to complete the story of the badlands.

I think the North Dakota badlands are particularly beautiful because of their parklands; wooded areas that occur in draws and on north-facing slopes. Heavy vegetation in the badlands in places like Little Missouri State Park adds to the scenery. Evergreens, such as the Rocky Mountain juniper, ponderosa, and creeping juniper are interspersed with quaking aspen, cottonwood, and poplar. Limber pines are found in the badlands in the southwest corner of the state, near Marmarth.

I’ve hiked and camped in the badlands many times. Evening summer showers accentuate the colors and the clinker beds assume intense shades of red and orange. The fresh, pungent aroma of wet sage and cedar enhance the experience. At night, the stark, intricately eroded pinnacles can seem unreal. In the moonlight or in a night lightning storm, it is easy to imagine the strange shapes as ruins of a magical city, rather than structures of mere sand and clay. Blend in the sound of coyotes conversing and the badlands environment is complete.

Little Missouri River, badlands

Fig. 8-F, Panoramic view of the bend in the Little Missouri River from North Unit of Theodore Roosevelt Park. Materials exposed in cliffs are Sentinel Butte Formation. Photo: 7-27-2011

 

7-THE BADLANDS – PART ONE

If asked what he or she knows about North Dakota’s geology, an average resident will likely mention the badlands first. That’s true too of visitors, many of whom come to the state to see our best-known natural feature, the scenic badlands along the Little Missouri River.

Little Missouri River

Fig. 7-A. View upstream (to the south) of the Little Missouri River in Billings and Golden Valley counties about three miles north of Bullion Butte. Photo: 7-8-2010.

The badlands landscape is a rugged and hilly one, best viewed from above, looking down on the hills, not up at them, as we usually view buttes. From the rim of the “breaks,” the point where we descend into the badlands, an intricately eroded landscape of sparsely wooded ridges, bluffs, buttes, and pinnacles lies before us. Black veins of lignite coal may be seen eroding out of the steep badlands slopes. Reddish bands of clinker add vivid colors to the area. Pieces of petrified wood, as well as fossil stumps and logs, litter the surface. Behind us stretch rolling plains, interrupted only by occasional buttes.

Bullion Creek Badlands, Golden Valley County

Fig. 7-B. Bullion Creek Formation badlands, four miles north of Bullion Butte in Golden Valley County. Castellated sandstone structures, resulting in towering or battlement shapes, can be seen at the top of the butte. Such structures are examples of one of many kinds of badlands erosion. Photo: 8-7-2011.

.

 

 

The American Indians, who inhabited the area when the European settlers arrived, referred to badlands as “mako sica,” (“land bad”). Early French explorers translated and added to this, referring to “les mauvais terrers a’ traverser” (“bad land to travel across”).

Bullion Creek badlands, Billings County

Fig. 7-C. Tertiary Bullion Creek Formation badlands along the Little Missouri River, Billings County. This view is to the north, along the East River Road about five miles north of the South Unit of Theodore Roosevelt National Park. The snow shows the erosion patterns in the south-facing bluffs in the distance beyond the river, which is at the base of the bluffs. Photo :1-15-2010.

 

 

 

 

General Alfred Sully, preparing to cross the badlands in August of 1864, described them as “hell with the fires burned out.” Theodore Roosevelt, who lived for a while in the Little Missouri Badlands in the 1880s, described them as “fantastically beautiful.” I prefer TR’s description.

Age of the Badlands Materials

Badlands topography is found in several places on the plains of the U.S. and Canada. The best-known badlands in the United States are the extensive “Big Badlands,” along the White River in western South Dakota. Near Dickinson we have the “South Heart Badlands” (known also as the “Little Badlands”) where we find layers of sedimentary rock, equivalent (same materials, same geologic age) in part to those in South Dakota’s Big Badlands. The South Heart Badlands are an erosional remnant of what was once a large butte or group of buttes. The South Heart Badlands are carved mainly from strata of Eocene and Oligocene age, ranging between 55 and 25 million years old. The youngest beds belong to the Miocene Arikaree Formation sandstone (22 million years old), which caps some badlands buttes.

South Heart Badlands

Fig. 7-D. South Heart Badlands about six miles south of South Heart, Stark County. Photo 9-24-2009..

North Dakota’s Little Missouri Badlands extend from near the Little Missouri River’s headwaters in Wyoming near Devils Tower to the point where the Little Missouri River joins the Missouri River in western North Dakota. The materials being eroded in these, our most extensive area of badlands, are much older than those in the South Heart Badlands.

The oldest materials in the badlands are in the southwest corner of the state, near Marmarth, where Cretaceous-age Hell Creek Formation beds (about 65 million years old) have been carved into badlands. The dark and somber, gray and purple beds of the Hell Creek Formation contain dinosaur fossils. Small patches of badlands, carved from the Hell Creek formation can also be seen along State Highway 1806 between Huff and Fort Rice in Morton County.

badlands

Fig. 7-E. This badlands topography is located about three miles northeast of Marmarth in Slope County. The materials are Cretaceous in age, about 65 million years old. In contrast to the badlands farther north, which are shades of light brown, these older beds are darker, tending to be purple and gray. They contain dinosaur fossils. Photo 10-22-2009.

However, the main area of  the Little Missouri Badlands is that which has been carved largely from the Paleocene Bullion Creek and Sentinel Butte formations, which were deposited  between 58 and 56 million years ago. The beds that have been eroded into these badlands are too young for dinosaur fossils; the dinosaurs were already extinct when they were deposited.

Between 70 and 40 million years ago, a major mountain-building event known as the Laramide Orogeny (orogeny = “mountain forming”) formed the Rocky Mountains in Montana and Wyoming. As the mountains rose, they were attacked by intense erosion, providing sediment to eastward-flowing rivers and streams. The rivers delivered the eroded sediment to western North Dakota’s coastal plain, an area that could be likened to today’s Mississippi River Delta (central North Dakota was an inland sea at that time). Sediment from the eroding mountains accumulated into thick layers of soft, poorly lithified siltstone, claystone, and sandstone: materials that were deposited on river floodplains and in swamps in what is now western North Dakota. These are the sediments we see exposed today in the Little Missouri Badlands.

In addition to the stream-transported sediments, clouds of volcanic ash, blown eastward from the rising Rocky Mountains during the Laramide Orogeny, collected in layers that were later weathered to clays ( “bentonite”). When wet, the clay absorbs water and swells, and it can become slippery when wet so don’t try walking or driving on it. When the beds dry, they assume a surface  texture, similar in appearance and consistency to popcorn, with colors ranging from white to bluish-gray or black.

Why the Badlands Formed

South Heart Badlands

Fig. 7-F. The dark-gray to black mound-like hills are examples of topography of the South Heart Member of the Eocene Chadron Formation in the South Heart Badlands south of the town of South Heart, Stark County. The material is a clay that forms a popcorn-like surface when it is dry. When wet, it is sticky and slippery. The clay is a weathering product of volcanic ash. Photo 9-24-2009

Even though the layers of sedimentary rock exposed in North Dakota’s Little Missouri Badlands range from Cretaceous through Eocene in age (65 to 50 million years old), the badlands themselves–the hills and valleys we see today–are not nearly that old. Before a glacier diverted it, the Little Missouri River flowed northward through a broad, smooth valley, joining the early Yellowstone River in northern Williams County. The Little Missouri and Yellowstone rivers came together near Alamo (about 30 miles north of Williston) in a place now buried beneath 400 feet of glacial deposits. From there, the combined Yellowstone-Little Missouri River flowed northeastward into Canada.

The diversion of the Little Missouri River, away from its route to the north, probably happened sometime prior to the deposition of a volcanic ash bed on the glacial sediment blocking the channel (the ash was deposited as a result of a volcanic eruption in the area of Yellowstone Park 640,000 years ago). It is possible, though, that an earlier glacier might have diverted the river – the 640,000-year figure is a minimum date; erosion of the badlands may have begun as early as 3.5 million years ago.

Since it was diverted by glacial ice, the Little Missouri River has flowed over a shorter and steeper route than it did prior to its diversion. That part of the river’s route today, from the point where it makes its sharp turn toward the east in the area of the North Unit of Theodore Roosevelt National Park, is east rather than north as it had been before a glacier diverted it. When the river assumed its new, shorter route toward the Gulf of Mexico, it began a vigorous erosion cycle, cutting down more rapidly and deeply and sculpting badlands topography. The badlands then, are an indirect result of glacial activity, even though the only conspicuous direct evidence of glaciation remaining in the area is an occasional glacial erratic on the upland in northern McKenzie County.

Sentinel Butte badlands; Theodore Roosevelt Park

Fig. 7-G. Badlands carved from the Tertiary-age Sentinel Butte Formation in the North Unit of Theodore Roosevelt National Park. Notice that certain beds can be followed across the entire vista, although they may be discontinuous, eroded away in places. An example is the bluish gray layer that forms the surface of many table-like pedestals. This layer is a bentonitic clay, a weathered volcanic ash deposit. The layers shown here are slightly younger than are those exposed in the South Unit of the park. Total relief here, from valley floor to upland surface, is about 500 feet. Photo: 10-24-2009

 

6-NORTH DAKOTA’S FIRE-FORMED ROCKS

As you travel through western North Dakota, notice the multicolored layers and brick- or glass-like masses of baked and fused clay, shale, and sandstone. These baked materials, known as clinker, but often referred to locally as “scoria,” formed in areas where seams of lignite coal burned, baking the nearby sediments to a natural brick. Clinker beds range in thickness from a few feet to more than 50 feet in North Dakota, with even thicker beds in Wyoming and Montana.

Fig. 2aThis photo was taken in 1972. It shows juniper trees in the foreground that have burned due to the burning lignite vein beneath. In the background are columnar-shaped juniper trees, which grow in the columnar shapes as a result of exposure to gases emitted by the burning lignite.

Fig 6-A. This photo was taken in 1972. It shows juniper trees in the foreground that have burned due to the burning lignite vein beneath. In the background are columnar-shaped juniper trees, which grow in the columnar shapes as a result of exposure to gases emitted by the burning lignite. Photo scan: 1972.

Burning lignite vein near Buck Hill in the South Unit of Theodore Roosevelt National Park. Notice the red embers in the dark part of the vein, in the center of the image. This lignite vein burned for about 26 years, from 1951 until 1977. While it was burning, fumes from the burning lignite caused juniper trees in the vicinity to grow in a columnar configuration. Since the fire went out, the trees have reverted to their normal growth habit. This image is a scan of a photo I took in 1972.

Fig.6-B. Burning lignite vein near Buck Hill in the South Unit of Theodore Roosevelt National Park. Notice the red embers in the dark part of the vein, in center of image. This lignite vein burned for 26 years, from 1951 until 1977. While it was burning, fumes from the burning lignite caused juniper trees in the vicinity to grow in a columnar configuration. Since the fire went out, the trees have reverted to their normal growth habit. Photo scan: 1972.

 

 

 

 

 

 

 

 

 

 

The first recorded reference to clinker that I know of was by William Clark, who made the following entry in his journal while wintering at Fort Mandan (March 21, 1805):

 Saw an emence quantity of Pumice Stone on the sides & feet of the hills and emence beds of Pumice Stone near the Tops of them, with evident marks of the hills having once been on fire. I Collecte Somne of the different sorts i.e. Stone Pumice & a hard earth, and put them into a funace, the hard earth melted and glazed the others two and the hard Clay became a pumice Stone glazed.

When Lewis and Clark arrived at Beulah Bay, about 20 miles west of present-day Riverdale, on April 10, 1805, Lewis noticed a seam of lignite burning along the face of an outcrop. He commented:

“the bluff is now on fire and throws out considerable quantities of smoke which has a strong sulphurious smell.”

On April 16, 1805, Meriwether Lewis wrote the following:

I believe it to be the strata of coal seen in those hills which causes the fire and birnt appearances frequently met with in this quarter. where those birnt appearances are to be seen in the face of the river bluffs, the coal is seldom seen, and when you meet with it in the neaghbourhood of the stratas of birnt earth, the coal appears to be presisely at the same hight, and is nearly of the same thickness, togeter with the sand and a sulphurious substance which usually accompanys it.

Following Lewis and Clark, numerous explorers mentioned seeing clinker as they traveled through the region. They included Larocque (1805), Maximilian (1833), Nicollet and Fremont (1839), and Audubon (1843). Some of these explorers believed the clinker beds had a volcanic origin, but Lewis and Clark were correct in their appraisal that clinker formed as clay and sand were heated by the underlying lignite when it caught fire due to natural causes, such as lightning or prairie fires.

lignite ash bed, North Dakota geology

Fig. 6-C. Ash bed remaining after a lignite bed has burned. The ash is mainly the white material, along with some black, unburned lignite. The ash bed is overlain by blocky, red-colored clinker. This ash-bed is exposed along a road leading to the top of Sentinel Butte in Golden Valley County. The location is about two miles south of the Town of Sentinel Butte. Sec. 6, T. 139 N., R. 104 W. Photo: 8-28-2010.

Several early explorers reported seeing coal fires in the northern Great Plains. Over the years, range fires have ignited lignite beds many times. At Buck Hill, in the South Unit of Theodore Roosevelt National Park, a lignite seam burned from 1951 until 1977. During early October, 1976, prairie fires burned over large areas in the southwestern part of the state, igniting underground lignite seams in at least 30 locations over a 7,000-acre area near Amidon. Most of the fires were extinguished before the following spring, but some of them burned for several months. Again, in July, 1988, several lignite seams were ignited by widespread fires in the badlands. Juniper tree roots burning downward from the surface, into the coal, ignited some of the fires.

Burning lignite is limited to depths where adequate air circulates from the surface. The level of the water table may control this depth (burning can’t take place in water-saturated materials). While veins of coal are burning, fumes from the smoldering coal can alter the growth habits of nearby vegetation, causing it to grow in unusual shapes. After the fires go out, the vegetation reverts to its normal shape, common elsewhere in the badlands. Near Amidon, a stand of junipers grew as columnar-shaped trees for many years while a nearby lignite seam burned, producing ethylene gas, which altered the growth habit of the trees. Since the fire went out, the trees have resumed their normal, more bush-like shapes.

Heat from burning lignite beds hardens, melts, or sinters the overlying and surrounding rocks into brick or glass. Sintering is a process that fuses material into a hard mass, without melting it, much like bricks are baked in a kiln. When lignite burns, it may be transformed to an ash bed that takes up only a fraction of the space the lignite did before it burned. Thin layers of white ash, mostly potash, lime, and other inorganic, non-combustible minerals, can sometimes be found at the base of clinker beds.

Clinker "plug", Golden Valley County, North Dakota geology

Fig. 6-D. This example of a clinker “plug” is in Golden Valley County. Plugs like this one probably formed when overlying sediment fell into a hole in the burning lignite seam beneath it where it was heated more quickly and to a higher temperature than the surrounding beds. After the clay has been baked by heat from burning lignite, it has many holes and crevices. This exposure is along the road leading to the top of Sentinel Butte. Sec. 6, T. 139 N., R. 104 W. Photo: 7-28-2014.

The baking process oxidizes iron-rich minerals, mainly to red shades, but black, gray, purple, yellow, and other hues are common. The hue and intensity of the colors depends upon the mineral composition, the grain size of the material that was baked, and how hot a temperature was reached during the baking process. The brick-red color, which is most common, is due primarily to the presence of the mineral hematite (iron oxide: the same as common rust). Following a rain shower, wet clinker beds are much brighter in color.

By the time the materials overlying a burning lignite bed cool and collapse, they are hard, and usually partially fused by baking. As they slump, falling into the burned-out space, the baked, melted, and sintered materials may hold together, resulting in a mass that can be as much as 75 percent air space. After the clinker cools, the empty spaces provide convenient living places for small animals, such as rattlesnakes.

Several prominent clinker zones are found throughout the Little Missouri Badlands. The clinker forms a cap on many hills and ridges over extensive areas. Clinker resists erosion because it is harder than unbaked rocks and also because heating and subsidence during the baking process produce fractures that allow water to infiltrate, minimizing surface runoff. Erosion often leaves clinker as a cap on red-topped knobs, ridges, and buttes standing above the more subdued nearby topography developed on less-resistant, unbaked materials. Some widespread areas of clinker are particularly scenic; good examples can be seen along the Red Hills Road south of Sentinel Butte, along the Bennie Pier road in McKenzie County, and on parts of the Scenic Loop Drive in the South Unit of Theodore Roosevelt National Park.

Bennie Pier, buttes, North Dakota geology

Fig. 6-E. Buttes along the Bennie Pier road in McKenzie County, capped by clinker. The same clinker bed acts as a cap on many buttes in the area. Sec. 2, T. 147 N., R. 104 W. Photo: 7-22- 2010.

 

 

2-INTRODUCTION TO NORTH DAKOTA GEOLOGY – PART TWO

Turtle Mountain erratics

Fig. 2-A. Slopes on the south side of Turtle Mountain in Bottineau County, in an area where glacial erratic boulders are abundant. Erosion by running water, flowing on the surface along the slope of the Turtle Mountain upland has removed much of the fine materials, leaving erratics concentrated on the surface. Photo: 8-31- 2010.

Glaciation was the main geologic influence on much of North Dakota’s landscape. The Ice Age, a time geologists also refer to as the Pleistocene Epoch, includes most of the past three million years of geologic time. Glaciers advanced over the northern plains several times during the Ice Age,  reaching northern and eastern North Dakota. When it wasn’t glaciated, the state had a climate much like the one we enjoy today or possibly even milder at times. the Ice Age wasn’t one long “deep-freeze.”

Little Missouri River, wind canyon

Fig. 2-B. Badlands along the Little Missouri River in Billings County. Rapid erosion by the river causes the poorly consolidated sandstone and siltstone layers of the Bullion Creek Formation to slide downward, resulting in steep, freshly exposed slopes. The water carries these materials away when they fall into river, starting them on their way to the Gulf of Mexico. Photo: Photo: 9-16- 2009.

 

 

 

 

 

During their studies of the geology of the state, geologists have found evidence for at least seven separate glaciations, but there may have been more. The most recent of these glaciations is known as the Wisconsinan (because deposits typical of that glaciation are widespread in Wisconsin). The Wisconsinan glaciation began about 100,000 years ago and ended about 11,000 years ago. Some geologists debate whether the Ice Age has really ended yet. After all, large areas of the earth’s surface are still covered by extensive glaciers (Greenland, Antarctica, etc.). It’s likely that we are currently enjoying a lull between major glaciations.

Even though North Dakota was glaciated many times during the Ice Age, it is the Wisconsinan glacial deposits, the most recent ones, that are most obvious to us. These are the ones that form the hills and valleys in eastern and northern North Dakota and they are the ones in which our prairie potholes and wetlands are developed. Most of our richest farmland is developed on the Wisconsinan glacial surface.

Early glaciers, which advanced into North Dakota before the Wisconsinan glacier, also had a profound effect on the state. The materials they deposited have been largely eroded away, and about all that remains of them are occasional boulders  — “erratics.” I will discuss erratics elsewhere. It was an early glacier that diverted the course of the Little Missouri River eastward more than 640,000 years ago (possibly earlier). Before that time, the Little Missouri River flowed northward into Canada. In fact, all of North Dakota used to be drained by rivers that flowed into Canada. When it was diverted, the Little Missouri River began to carve the badlands we see today.

Blue Buttes, near Keene ND.

Fig. 2-C. Blue Buttes area of McKenzie County, near Keene. This butte, and others near the south end of a grouping known as the “Blue Buttes,” is capped by a sandstone layer of the Eocene Golden Valley Formation (the caprock is barely visible, along the top of the butte). Many of the larger buttes in this part of the State are capped by the same sandstone bed. The view is toward the west, with a thunderstorm approaching. Photo: 7-27- 2010.

All of us who have traveled around North Dakota know that the landscape varies considerably from place to place. Southwestern North Dakota, with its badlands, buttes, and broad vistas is largely the result of hundreds of thousands of years of erosion. The landscape there is not glacial. It has been carved from layers of flat-lying sandstone and other materials.

The Missouri River marks an approximate boundary between the eroded landscape of southwestern North Dakota and the entirely different glacial landscape north and east of the river, where we see small hills – small at least compared to large buttes like Sentinel Butte and Bullion Butte found in southwestern North Dakota. Eastern North Dakota is characterized by thousands of potholes, poorly developed drainage in places, and remarkably fertile farmland.

When the glaciers advanced over the state, they picked up some of the materials over which they flowed. The glaciers contained a variety of kinds of soil and rock, which they eventually deposited as thick layers of sediment. The exposed surface of these sediments has been weathered for the past several thousand years (since the glaciers melted) and it forms the rich soils our farmers work today.

Lake Sakakawea till, glacial deposits

Fig. 2-D. Glacial deposits (till) exposed in bluffs along Lake Sakakawea near Riverdale. This 40-foot-high cliff exposes boulders incorporated in a mass of finer material – the overall mixture is referred to as “till” by geologists. Most of the till shown here – the part that is characterized by vertical partings – was deposited by a glacier during Early Wisconsinan time, about 70,000 years ago. Younger, Late Wisconsinan till, about 16,000 years old, lies on top lighter color, lacking vertical partings and immediately beneath the grass cover. Photo: 6-27-2009.

Over much of eastern North Dakota, the glacial sediments were laid down as an undulating plain (think of the Carrington, Finley or Kenmare areas, for example). In other places, a more hilly landscape resulted (think of Turtle Mountain or the Missouri Coteau — places like Belcourt, Hurdsfield, Max, Ryder and countless others). In still other places, water from the melting glacier became ponded, forming huge lakes. Today, most of these areas are flat. Examples of the flat topography may be seen in places like Fargo, Hillsboro, Grand Forks or Grafton. The old floor of Glacial Lake Agassiz (the Red River Valley) is the classic example of flat. Hundreds of smaller glacial lake plains are found in North Dakota too.

Dead-ice moraine on Missouri Coteau

Fig. 2-E. Dead-ice moraine topography on the Missouri Coteau, about five miles north of Palermo, Mountrail County. The road helps to show the relief. Photo: 7-2-2010.

 

 

 

 

 

As the glaciers flowed over North Dakota, they tended to smooth off and wear down the hill tops and fill in the lower areas with sediment. The overall result is a fairly level landscape. The layers of glacial sediment underlying that landscape are extremely complex, containing buried river channels, blocks of sandstone and shale, old landscapes that were covered many times by fresh glacial sediments. Buried layers of gravel and sand, deposited by water flowing from the melting glacial ice, constitute aquifers. They contain some of our best sources of fresh water.

As the ice flowed, in some places it picked up large chunks of material and moved them short distances before setting them down again. A good example of this is at Devils Lake, where a large amount of material was picked up and moved southward a few miles. Today, Devils Lake lies in a broad lowland. South of the lake is a high range of hills, including Sully’s Hill. The hills consist of materials that were once in the lowland where Devils Lake is now.

In some places, huge floods of water from melting glaciers carved deep river channels. Countless small meltwater valleys, along with some large ones too, are found throughout eastern and northern North Dakota. The Sheyenne, Souris, and James River valleys are good examples of large meltwater valleys. Valley City, Minot, and Jamestown are nestled in meltwater valleys. The Missouri River valley is another example of a glacial river channel, but it had such a complicated history that I’ll plan on writing a special article about it.

How thick were the glaciers that covered North Dakota? Certainly, they were more than a thousand feet thick in the east and north, so thick that the Earth’s crust beneath the ice buckled and sagged downward, eventually rebounding when the ice melted.

Baldhilll Creek, glacial meltwater channel

Fig. 2-F. Baldhill Creek in its meltwater valley about three miles south-southeast of Hannaford in southern Griggs County. This is an example of a very small stream flowing in a valley that is much too large for the size of the stream (an “underfit stream”). The valley was formed by a much larger flow of water from melting glacial ice. Photo: 6-29-2011.

Who or what lived in North Dakota during the Ice Age? Mastodons and wooly mammoths lived along the edge of the glacier. Elk, caribou, and horses were common. Horses became extinct in North Dakota  and in  North America at the end of the Ice Age, They survived, worldwide, because they had migrated to Asia via the land bridge between North America and Asia prior to then. During my field work over the years, I’ve found mastodon teeth, caribou bones and, in the Lake Agassiz deposits, fossil fish bones, mainly perch. It’s likely that early humans also lived here while the most recent glacier was still melting.

I’ve mainly been discussing North Dakota’s glacial landscape. Part of the state, the southwest quarter, was not glaciated, but the glaciers also left their mark there. The badlands along the Little Missouri River owe their existence to early glaciers that diverted the river eastward from its northerly route into Canada. This diversion triggered greatly increased erosion by the Little Missouri River, which resulted in the formation of badlands.  Some places that were not glaciated are marked by polygons, formed when permafrost froze the land beyond the limit of the glaciers.

Sheyenne River; meltwater channel, erratics

Fig. 2-G. Sheyenne River meltwater channel (a small part of the valley) about six miles southeast of Cooperstown in southern Griggs County. Notice the large number of glacial erratic boulders on the slopes of the valley wall. Erratics remain behind when erosion by the running water removes the finer materials (silt, clay, etc.). Photo: 6-29- 2011.

Now Available
North Dakota’s Geologic Legacy Our Land and How It Formed
North Dakota's Geologic Legacy 12-10-15-412
Purchase from Amazon Purchase from NDSU Press
Recent Comments
    Archives
    Categories